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1 Introduction

In attacking the modelling bottleneck [13], we present current achievements in auto-
mated model generation and selection in constraint programming (CP). We also discuss
promising future directions in automated model selection, which we believe are of key
importance in enabling successful automated modelling in CP.

2 Automated model generation

The modelling bottleneck has been considered to be a significant limiting factor pre-
venting widespread adoption of CP technology. For a problem of interest, formulating
a correct CP model suitable for input to a constraint solver requires expertise and time;
formulating an effective CP model requires significantly more so. In order to address
this challenge, automated modelling has become a very active area of research in CP.
A promising approach to automate aspects of CP modelling has been the refinement of
abstract constraint specifications [2, 4] in languages such as ESRA [3], ESSENCE [5],
F [7] or Zinc [10, 12].

Our approach in CONJURE [1, 2] is to start from a highly abstract problem spe-
cification and produce concrete CP models automatically. The problem specification
language ESSENCE enables specifying problems concisely; the language is designed to
capture problem structure at a level of abstraction that is above where most CP model-
ling decisions are made. For instance, having an array of decision variables and posting
an allDiff constraint on this array is a common idiom in CP modelling. Many uses
of this idiom can be replaced with a set decision variable. Using a set decision variable
instead, the user gets access to a large set of predefined set operators — such as union,
intersection, subset, set equality — and more importantly they don’t commit to using a
one dimensional array. CONJURE can refine this decision variable and all expressions
involving it in multiple ways, possibly also including the one-dimensional array repres-
entation as an alternative.

In addition to sets, ESSENCE provides decision variables with other abstract do-
mains: tuples, enumerations, functions, relations, multi-sets, partitions, and allows ar-
bitrary nesting of these. It also provides a rich collection of operators for variables with
abstract domains enabling concise specification of problem structure. While producing



a concrete CP model, CONJURE needs to make two kinds of modelling decisions, rep-
resentation selection and expression refinement. In order to express the transformation
rules used by CONJURE we have devised a domain-specific language. This enables us
to write rules more easily, extend CONJURE’s modelling capabilities without recompil-
ing, and make rule authoring more accessible to CP researchers so they can encode new
modelling tricks and improve CONJURE.

CONJURE contains at least one, but typically several, representation options for each
abstract domain, and alternative translations for operators on abstract variables. Hence,
it can typically generate several alternative formulations of a single problem specifica-
tion. In this regard, CONJURE is similar to conventional compilers, which also have to
choose between alternative transformations during compilation. Each decision in CON-
JURE is far more important though, since solution performance of different models for
the same problem can be drastically different.

Previous work shows how CONJURE generates kernels of published models from
the literature [2] and how it produces symmetry breaking constraints automatically [1].

Future directions

Automated modelling tools provide a powerful infrastructure and they can be improved
in several directions: addition of alternative representations for abstract domains and
alternative reformulations for problem expressions; automated generation of symmetry
breaking and implied constraints.

3 Automated model selection

CP modelling is important; a single problem can be modelled in several different ways,
and there is a vast variation in solution performance depending on the model chosen.
Now that we are able to automatically generate alternative models, automating the
model selection process naturally becomes the next big challenge. Equipped with a
good way of differentiating between CP models, an automated modelling system can
finally be very useful to both novice and expert users of CP technology.

The model selection problem in CP is very similar to the general algorithm selection
problem [14]. A thorough survey of the literature about this problem with a strong
emphasis to combinatorial search problems and CP can be found in [11].

There are several options to consider before we can attack this problem: to select a
single model or a set of models; to work on problem classes or problem instances; if
working on problem classes, how to analyse and explore the instance space. Leaving
these questions unanswered, we first present the kinds of approaches CONJURE enables.

Post-CONJURE analysis Using CONJURE to generate all alternative models for a gi-
ven problem, and using this set of concrete CP models as input for model selection.
An advantage of this approach is the clear separation between model generation
and selection. On the other hand, a major disadvantage is having to generate pos-
sibly thousands of models only to realise that most of them aren’t very promising
early in model selection.



Mid-CONJURE heuristics Using heuristics to choose promising transformations dur-
ing CONJURE. A first iteration of this approach presents [1] promising results. In
this work, CONJURE locally selects the transformation which generates the most
compact domain/expression.

In addition, hybrid approaches can also be taken; i.e., multiple heuristics can be
used to generate a smaller set of alternative models, and this set can be used as input to
a more generic model selection procedure.

Selecting models for problem classes vs problem instances. In general, working
on problem instances is easier for both automated model generation and for automated
model selection. This shouldn’t be surprising as problem classes are essentially para-
meterised problem instances, and they describe a set of problems rather than a single
problem. For this very reason, selecting good models for a problem class is also more
valuable: once selection is completed, findings can be used for all instances of the same
class. This is also why we can afford more expensive analysis for model selection of
problem classes, the cost will be amortised over all the instances.

Selecting for the whole class vs subdivisions of the instance space. Selecting
effective models for a problem class can be tempting. However, we know different
models can be better for different instances — in an extreme example a problem class
can be composed of two subproblems and a parameter value can be controlling which
subproblem to actually solve. In such a case, the choice of an effective model highly
depends on the value of the given parameter.

Selecting a single model vs multiple models. Even if we limit ourselves to work-
ing on a single subdivision of the instance space or to a single instance, trying to se-
lect a single effective model can result in eliminating promising models prematurely
due to possible shortcomings of the learning technique. In contrast, selecting a set of
promising models can lead us to the notion of model portfolios, analogous to algorithm
portfolios [6, 8].

In [1], we present racing as a general technique when a user provides a representat-
ive set of instances for a problem class. We are also investigating how to automatically
generate instance data from a given problem specification in [9], to use when this data
is not available.

Future directions

Better metrics to compare models are needed. For instance level analysis, solution time
is the ultimate metric, however it is potentially very expensive, we need proxies to this.
For class level analysis, instance level metrics can be augmented with standard sampling
and aggregation methods if a representative subset of instance data is available. Without
such data we are left with class level symbolic analysis to compare models.

An important property of a model comparison metric is whether it can be used to
compare partial models or not. If a metric has this property, a best-so-far model can
be used as a lower bound and we can employ branch-and-bound to prune early during
automated model generation, and only generate good models.

Another direction is to explore better heuristics to guide CONJURE and evaluate
their relative performances. Simply, each such heuristic can be used independently to



generate a portfolio of models. A more sophisticated method will be to use a hyper-
heuristic to guide which one of the smaller heuristics should be used during model
generation; dynamically switching heuristics for different parts of the model.

4 Conclusion

We present the current achievements in automated modelling and model selection in CP
followed by a summary of promising future directions. These two areas of research are
closely related, automated modelling requires good model selection to be successful;
and model selection needs a diverse set of models to select from. The findings of model
selection are likely to be fed back to automated modelling systems to improve quality
and the signal-to-noise ratio in the generated models. We expect this feedback loop to
be fruitful and help making CP technology more accessible and more powerful.
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